
NAG C Library Function Document

nag_pde_parab_1d_cd (d03pfc)

1 Purpose

nag_pde_parab_1d_cd (d03pfc) integrates a system of linear or nonlinear convection-diffusion equations in
one space dimension, with optional source terms. The system must be posed in conservative form.
Convection terms are discretised using a sophisticated upwind scheme involving a user-supplied numerical
flux function based on the solution of a Riemann problem at each mesh point. The method of lines is
employed to reduce the PDEs to a system of ordinary differential equations (ODEs), and the resulting
system is solved using a backward differentiation formula (BDF) method.

2 Specification

void nag_pde_parab_1d_cd (Integer npde, double *ts, double tout,

void (*pdedef)(Integer npde, double t, double x, const double u[],
const double ux[], double p[], double c[], double d[], double s[],
Integer *ires, Nag_Comm *comm),

void (*numflx)(Integer npde, double t, double x, const double uleft[],
const double uright[], double flux[], Integer *ires, Nag_Comm *comm,
Nag_D03_Save *saved),

void (*bndary)(Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ibnd, double g[], Integer *ires,
Nag_Comm *comm),

double u[], Integer npts, const double x[], const double acc[], double tsmax,
double rsave[], Integer lrsave, Integer isave[], Integer lisave, Integer itask,
Integer itrace, const char *outfile, Integer *ind, Nag_Comm *comm,
Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_cd (d03pfc) integrates the system of convection-diffusion equations in conservative
form:

Xnpde
j¼1

Pi;j

@Uj

@t
þ @F i

@x
¼ Ci

@Di

@x
þ Si; ð1Þ

or the hyperbolic convection-only system:

@Ui

@t
þ @F i

@x
¼ 0; ð2Þ

for i ¼ 1; 2; . . . ;npde; a � x � b; t � t0; where the vector U is the set of solution values

Uðx; tÞ ¼ ½U1ðx; tÞ; . . . ; Unpdeðx; tÞ�T:

The functions Pi;j, Fi, Ci and Si depend on x, t and U ; and Di depends on x, t, U and Ux, where Ux is

the spatial derivative of U . Note that Pi;j, Fi, Ci and Si must not depend on any space derivatives; and

none of the functions may depend on time derivatives. In terms of conservation laws, Fi, Ci@Di=@x and
Si are the convective flux, diffusion and source terms respectively.

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xnpts
are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xnpts. The initial values of the

functions Uðx; tÞ must be given at t ¼ t0.

The PDEs are approximated by a system of ODEs in time for the values of Ui at mesh points using a
spatial discretisation method similar to the central-difference scheme used in nag_pde_parab_1d_fd

d03 – Partial Differential Equations d03pfc

[NP3645/7] d03pfc.1

(d03pcc), nag_pde_parab_1d_fd_ode (d03phc) and nag_pde_parab_1d_fd_ode_remesh (d03ppc), but with
the flux Fi replaced by a numerical flux, which is a representation of the flux taking into account the
direction of the flow of information at that point (i.e., the direction of the characteristics). Simple central
differencing of the numerical flux then becomes a sophisticated upwind scheme in which the correct
direction of upwinding is automatically achieved.

The numerical flux vector, F̂F i say, must be calculated by the user in terms of the left and right values of
the solution vector U (denoted by UL and UR respectively), at each mid-point of the mesh
xj�1=2 ¼ ðxj�1 þ xjÞ=2 for j ¼ 2; 3; . . . ; npts. The left and right values are calculated by

nag_pde_parab_1d_cd (d03pfc) from two adjacent mesh points using a standard upwind technique

combined with a Van Leer slope-limiter (see LeVeque (1990)). The physically correct value for F̂F i is
derived from the solution of the Riemann problem given by

@Ui

@t
þ @F i

@y
¼ 0; ð3Þ

where y ¼ x� xj�1=2, i.e., y ¼ 0 corresponds to x ¼ xj�1=2, with discontinuous initial values U ¼ UL for

y < 0 and U ¼ UR for y > 0, using an approximate Riemann solver. This applies for either of the systems
(1) or (2); the numerical flux is independent of the functions Pi;j, Ci, Di and Si. A description of several

approximate Riemann solvers can be found in LeVeque (1990) and Berzins et al. (1989). Roe’s scheme
(Roe (1981)) is perhaps the easiest to understand and use, and a brief summary follows. Consider the
system of PDEs Ut þ Fx ¼ 0 or equivalently Ut þAUx ¼ 0. Provided the system is linear in U , i.e., the

Jacobian matrix A does not depend on U , the numerical flux F̂F is given by

F̂F ¼ 1
2
FL þ FRÞð � 1

2

Xnpde
k¼1

�kj�kjek; ð4Þ

where FL (FR) is the flux F calculated at the left (right) value of U , denoted by UL (UR); the �k are the
eigenvalues of A; the ek are the right eigenvectors of A; and the �k are defined by

UR � UL ¼
Xnpde
k¼1

�kek: ð5Þ

An example is given in Section 9.

If the system is nonlinear, Roe’s scheme requires that a linearized Jacobian is found (see Roe (1981)).

The functions Pi;j, Ci, Di and Si (but not Fi) must be specified in a function pdedef supplied by the user.

The numerical flux F̂F i must be supplied in a separate user-supplied function numflx. For problems in the
form (2), the actual argument d03pfp may be used for pdedef (d03pfp is included in the NAG C Library;
however, its name may be implementation-dependent: see the Users’ Note for your implementation for
details). d03pfp sets the matrix with entries Pi;j to the identity matrix, and the functions Ci, Di and Si to

zero.

The boundary condition specification has sufficient flexibility to allow for different types of problems. For
second-order problems i.e., Di depending on Ux, a boundary condition is required for each PDE at both
boundaries for the problem to be well-posed. If there are no second-order terms present, then the
continuous PDE problem generally requires exactly one boundary condition for each PDE, that is npde
boundary conditions in total. However, in common with most discretisation schemes for first-order
problems, a numerical boundary condition is required at the other boundary for each PDE. In order to be
consistent with the characteristic directions of the PDE system, the numerical boundary conditions must be
derived from the solution inside the domain in some manner (see below). Both types of boundary
conditions must be supplied by the user, i.e., a total of npde conditions at each boundary point.

The position of each boundary condition should be chosen with care. In simple terms, if information is
flowing into the domain then a physical boundary condition is required at that boundary, and a numerical
boundary condition is required at the other boundary. In many cases the boundary conditions are simple,
e.g., for the linear advection equation. In general the user should calculate the characteristics of the PDE
system and specify a physical boundary condition for each of the characteristic variables associated with
incoming characteristics, and a numerical boundary condition for each outgoing characteristic.

d03pfc NAG C Library Manual

d03pfc.2 [NP3645/7]

A common way of providing numerical boundary conditions is to extrapolate the characteristic variables
from the inside of the domain. Note that only linear extrapolation is allowed in this function (for greater
flexibility the function nag_pde_parab_1d_cd_ode (d03plc) should be used). For problems in which the
solution is known to be uniform (in space) towards a boundary during the period of integration then
extrapolation is unneccesary; the numerical boundary condition can be supplied as the known solution at
the boundary. Examples can be found in Section 9.

The boundary conditions must be specified in a function bndary (provided by the user) in the form

GL
i ðx; t; UÞ ¼ 0 at x ¼ a; i ¼ 1; 2; . . . ;npde; ð6Þ

at the left-hand boundary, and

GR
i ðx; t; UÞ ¼ 0 at x ¼ b; i ¼ 1; 2; . . . ; npde; ð7Þ

at the right-hand boundary.

Note that spatial derivatives at the boundary are not passed explicitly to the function bndary, but they can
be calculated using values of U at and adjacent to the boundaries if required. However, it should be noted
that instabilities may occur if such one-sided differencing opposes the characteristic direction at the
boundary.

The problem is subject to the following restrictions:

(i) Pi;j, Fi, Ci and Si must not depend on any space derivatives;

(ii) Pi;j, Fi, Ci, Di and Si must not depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) The evaluation of the terms Pi;j, Ci, Di and Si is done by calling the function pdedef at a point

approximately midway between each pair of mesh points in turn. Any discontinuities in these
functions must therefore be at one or more of the mesh points x1; x2; . . . ; xnpts;

(v) At least one of the functions Pi;j must be non-zero so that there is a time derivative present in the

PDE problem;

In total there are npde� npts ODEs in the time direction. This system is then integrated forwards in time
using a BDF method.

For further details of the algorithm, see Pennington and Berzins (1994) and the references therein.

4 References

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using
the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Hirsch C (1990) Numerical Computation of Internal and External Flows, Volume 2: Computational

Methods for Inviscid and Viscous Flows John Wiley

LeVeque R J (1990) Numerical Methods for Conservation Laws Birkhäuser Verlag

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99

Roe P L (1981) Approximate Riemann solvers, parameter vectors, and difference schemes J. Comput.

Phys. 43 357–372

5 Parameters

1: npde – Integer Input

On entry: the number of PDEs to be solved.

Constraint: npde � 1.

d03 – Partial Differential Equations d03pfc

[NP3645/7] d03pfc.3

2: ts – double * Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in u. Normally ts ¼ tout.

Constraint: ts < tout.

3: tout – double Input

On entry: the final value of t to which the integration is to be carried out.

4: pdedef Function

pdedef must evaluate the functions Pi;j, Ci, Di and Si which partially define the system of PDEs.

Pi;j, Ci and Si may depend on x, t and U ; Di may depend on x, t, U and Ux. pdedef is called

approximately midway between each pair of mesh points in turn by nag_pde_parab_1d_cd (d03pfc).
The actual argument d03pfp may be used for pdedef for problems in the form (2) (d03pfp is
included in the NAG C Library; however, its name may be implementation-dependent: see the
Users’ Note for your implementation for details).

Its specification is:

void pdedef (Integer npde, double t, double x, const double u[],
const double ux[], double p[], double c[], double d[], double s[],
Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

4: u½npde� – const double Input

On entry: u½i� 1� contains the value of the component Uiðx; tÞ, for i ¼ 1; 2; . . . ;npde.

5: ux½npde� – const double Input

On entry: ux½i� 1� contains the value of the component @Uiðx; tÞ=@x, for
i ¼ 1; 2; . . . ; npde.

6: p½npde� npde� – double Output

Note: where Pði; jÞ appears in this document it refers to the array element

p½npde� ðj� 1Þ þ i� 1�. We recommend using a #define to make the same definition in

your calling program.

On exit: Pði; jÞ must be set to the value of Pi;jðx; t; UÞ, for i; j ¼ 1; 2; . . . ; npde.

7: c½npde� – double Output

On exit: c½i� 1� must be set to the value of Ciðx; t; UÞ, for i ¼ 1; 2; . . . ; npde.

8: d½npde� – double Output

On exit: d½i� 1� must be set to the value of Diðx; t; U; UxÞ, for i ¼ 1; 2; . . . ; npde.

d03pfc NAG C Library Manual

d03pfc.4 [NP3645/7]

9: s½npde� – double Output

On exit: s½i� 1� must be set to the value of Siðx; t; UÞ, for i ¼ 1; 2; . . . ; npde.

10: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE USER STOP.

ires ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set ires ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets ires ¼ 3, then nag_pde_parab_1d_cd (d03pfc) returns to the
calling function with the error indicator set to fail.code ¼ NE FAILED DERIV.

11: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

5: numflx Function

numflx must supply the numerical flux for each PDE given the left and right values of the solution
vector u. numflx is called approximately midway between each pair of mesh points in turn by
nag_pde_parab_1d_cd (d03pfc).

Its specification is:

void numflx (Integer npde, double t, double x, const double uleft[],
const double uright[], double flux[], Integer *ires, Nag_Comm *comm,
Nag_D03_Save *saved)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

4: uleft½npde� – const double Input

On entry: uleft½i� 1� contains the left value of the component UiðxÞ, for
i ¼ 1; 2; . . . ; npde.

5: uright½npde� – const double Input

On entry: uright½i� 1� contains the right value of the component UiðxÞ, for
i ¼ 1; 2; . . . ; npde.

6: flux½npde� – double Output

On exit: flux½i� 1� must be set to the numerical flux F̂F i, for i ¼ 1; 2; . . . ;npde.

d03 – Partial Differential Equations d03pfc

[NP3645/7] d03pfc.5

7: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE USER STOP.

ires ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set ires ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets ires ¼ 3, then nag_pde_parab_1d_cd (d03pfc) returns to the
calling function with the error indicator set to fail.code ¼ NE FAILED DERIV.

8: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

9: saved – Nag_D03_Save * Input/Output

On entry: contains the current state of saved data concerning the computation. If numflx
calls one of the approximate Riemann solvers nag_pde_parab_1d_euler_roe (d03puc),
nag_pde_parab_1d_euler_osher (d03pvc), nag_pde_parab_1d_euler_hll (d03pwc), or
nag_pde_parab_1d_euler_exact (d03pxc) then saved should be passed through unchanged
to that function.

On exit: the user should not change the components of saved.

6: bndary Function

bndary must evaluate the functions GL
i and GR

i which describe the physical and numerical
boundary conditions, as given by (6) and (7).

Its specification is:

void bndary (Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ibnd, double g[], Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: npts – Integer Input

On entry: the number of mesh points in the interval ½a; b�.

3: t – double Input

On entry: the current value of the independent variable t.

4: x½npts� – const double Input

On entry: the mesh points in the spatial direction. x½0] corresponds to the left-hand
boundary, a, and x½npts� 1] corresponds to the right-hand boundary, b.

5: u½3� npde� – const double Input

Note: where Uði; jÞ appears in this document it refers to the array element

u½npde� ðj� 1Þ þ i� 1�. We recommend using a #define to make the same definition in

d03pfc NAG C Library Manual

d03pfc.6 [NP3645/7]

your calling program.

On entry: contains the value of solution components in the boundary region. If ibnd ¼ 0,
then Uði; jÞ contains the value of the component Uiðx; tÞ at x ¼ x½j� 1�, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; 3. If ibnd 6¼ 0, then Uði; jÞ contains the value of the
component Uiðx; tÞ at x ¼ x½npts� j�, for i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; 3.

6: ibnd – Integer Input

On entry: specifies which boundary conditions are to be evaluated. If ibnd ¼ 0, then
bndary must evaluate the left-hand boundary condition at x ¼ a. If ibnd 6¼ 0, then
bndary must evaluate the right-hand boundary condition at x ¼ b.

7: g½npde� – double Output

On exit: g½i� 1� must contain the ith component of either gL or gR in (6) and (7),
depending on the value of ibnd, for i ¼ 1; 2; . . . ; npde.

8: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE USER STOP.

ires ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set ires ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets ires ¼ 3, then nag_pde_parab_1d_cd (d03pfc) returns to the
calling function with the error indicator set to fail.code ¼ NE FAILED DERIV.

9: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

7: u½npde� npts� – double Input/Output

Note: where Uði; jÞ appears in this document it refers to the array element u½npde� ðj� 1Þ þ i� 1�.
We recommend using a #define to make the same definition in your calling program.

On entry: Uði; jÞ must contain the initial value of Uiðx; tÞ at x ¼ x½j� 1� and t ¼ ts; for
i ¼ 1; 2; . . . ;npde ; j ¼ 1; 2; . . . ; npts.

On exit: Uði; jÞ will contain the computed solution Uiðx; tÞ at x ¼ x½j� 1� and t ¼ ts; for
i ¼ 1; 2; . . . ;npde; j ¼ 1; 2; . . . ; npts.

8: npts – Integer Input

On entry: the number of mesh points in the interval ½a; b�.
Constraint: npts � 3.

9: x½npts� – const double Input

On entry: the mesh points in the space direction. x½0] must specify the left-hand boundary, a, and
x½npts� 1] must specify the right-hand boundary, b.

Constraint: x½0� < x½1� < � � � < x½npts� 1�.

d03 – Partial Differential Equations d03pfc

[NP3645/7] d03pfc.7

10: acc½2� – const double Input

On entry: the components of acc contain the relative and absolute error tolerances used in the local
error test in the time integration.

If Eði; jÞ is the estimated error for Ui at the jth mesh point, the error test is

Eði; jÞ ¼ acc½0� � Uði; jÞ þ acc½1�:
Constraint: acc½0� and acc½1� � 0:0 (but not both zero).

11: tsmax – double Input

On entry: the maximum absolute step size to be allowed in the time integration. If tsmax ¼ 0:0
then no maximum is imposed.

Constraint: tsmax � 0:0.

12: rsave½lrsave� – double Input/Output

On entry: if ind ¼ 0, rsave need not be set. If ind ¼ 1 then it must be unchanged from the
previous call to the function.

On exit: contains information about the iteration required for subsequent calls.

13: lrsave – Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag_pde_parab_1d_cd (d03pfc) is called.

Constraint: lrsave � ð11þ 9� npdeÞ � npde� nptsþ ð32þ 3� npdeÞ � npdeþ 7�
nptsþ 54.

14: isave½lisave� – Integer Input/Output

On entry: if ind ¼ 0, isave need not be set. If ind ¼ 1 then it must be unchanged from the previous
call to the function.

On exit: contains information about the iteration required for subsequent calls. In particular:

isave½0] contains the number of steps taken in time.

isave½1] contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation
of the functions in the boundary conditions.

isave½2] contains the number of Jacobian evaluations performed by the time integrator.

isave½3] contains the order of the last backward differentiation formula method used.

isave½4] contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU decomposition
of the Jacobian matrix.

15: lisave – Integer Input

On entry: the dimension of the array isave as declared in the function from which
nag_pde_parab_1d_cd (d03pfc) is called.

Constraint: lisave � npde� nptsþ 24.

16: itask – Integer Input

On entry: the task to be performed by the ODE integrator. The permitted values of itask and their
meanings are detailed below:

d03pfc NAG C Library Manual

d03pfc.8 [NP3645/7]

itask ¼ 1

Normal computation of output values u at t ¼ tout (by overshooting and interpolating).

itask ¼ 2

Take one step in the time direction and return.

itask ¼ 3

Stop at first internal integration point at or beyond t ¼ tout.

Constraint: 1 � itask � 3.

17: itrace – Integer Input

On entry: the level of trace information required from nag_pde_parab_1d_cd (d03pfc) and the
underlying ODE solver. itrace may take the value �1, 0, 1, 2, or 3. If itrace < �1, then �1 is
assumed and similarly if itrace > 3, then 3 is assumed. If itrace ¼ �1, no output is generated. If
itrace ¼ 0, only warning messages from the PDE solver are printed. If itrace > 0, then output
from the underlying ODE solver is printed. This output contains details of Jacobian entries, the
nonlinear iteration and the time integration during the computation of the ODE system. The
advisory messages are given in greater detail as itrace increases.

18: outfile – char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

19: ind – Integer * Input/Output

On entry: ind must be set to 0 or 1.

ind ¼ 0

starts or restarts the integration in time.

ind ¼ 1

continues the integration after an earlier exit from the function. In this case, only the
parameters tout and fail should be reset between calls to nag_pde_parab_1d_cd (d03pfc).

Constraint: 0 � ind � 1.

On exit: ind ¼ 1.

20: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

21: saved – Nag_D03_Save * Input/Output

Note: saved is a NAG defined structure. See Section 2.2.1.1 of the Essential Introduction.

On entry: if the current call to nag_pde_parab_1d_cd (d03pfc) follows a previous call to a
Chapter d03 function then saved must contain the unchanged value output from that previous call.

On exit: data to be passed unchanged to any subsequent call to a Chapter d03 function.

22: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

ires set to an invalid value in call to pdedef, numflx, or bndary.

d03 – Partial Differential Equations d03pfc

[NP3645/7] d03pfc.9

On entry, npde ¼ hvaluei.
Constraint: npde � 1.

On entry, npts ¼ hvaluei.
Constraint: npts � 3.

On entry, ind is not equal to 0 or 1: ind ¼ hvaluei.
On entry, itask is not equal to 1, 2, or 3: itask ¼ hvaluei.

NE_INT_2

On entry, lisave is too small: lisave ¼ hvaluei. Minimum possible dimension: hvaluei.
On entry, lrsave is too small: lrsave ¼ hvaluei. Minimum possible dimension: hvaluei.

NE_ACC_IN_DOUBT

Integration completed, but small changes in acc are unlikely to result in a changed solution.
acc½0� ¼ hvaluei, acc½1� ¼ hvaluei.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This could
be due to user setting ires ¼ 3 in pdedef, numflx, or bndary.

NE_FAILED_START

Values in acc are too small to start integration: acc½0� ¼ hvaluei, acc½1� ¼ hvaluei.

NE_FAILED_STEP

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts ¼ hvaluei.
Error during Jacobian formulation for ODE system. Increase itrace for further details.

Underlying ODE solver cannot make further progress from the point ts with the supplied values of
acc. ts ¼ hvaluei, acc½0� ¼ hvaluei, acc½1� ¼ hvaluei.

NE_INCOMPAT_PARAM

On entry, acc½0] and acc½1] are both zero.

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_NOT_STRICTLY_INCREASING

On entry, mesh points x appear to be badly ordered: i ¼ hvaluei, x½i� 1� ¼ hvaluei j ¼ hvaluei,
x½j� 1� ¼ hvaluei.

NE_REAL

On entry, tsmax ¼ hvaluei.
Constraint: tsmax � 0:0.

On entry, acc½1� < 0:0: acc½1� ¼ hvaluei.
On entry, acc½0� < 0:0: acc½0� ¼ hvaluei.

NE_REAL_2

On entry, tout� ts is too small: tout ¼ hvaluei, ts ¼ hvaluei.
On entry, tout � ts: tout ¼ hvaluei, ts ¼ hvaluei.

d03pfc NAG C Library Manual

d03pfc.10 [NP3645/7]

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

The functions P , D, or C appear to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires ¼ 2 has been set in pdedef, numflx, or bndary.
Integration is successful as far as ts: ts ¼ hvaluei.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_NOT_WRITE_FILE

Cannot open file hvaluei for writing.

NE_NOT_CLOSE_FILE

Cannot close file hvaluei.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The function controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so the
accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of varying
the components of the accuracy parameter, acc.

8 Further Comments

The function is designed to solve systems of PDEs in conservative form, with optional source terms which
are independent of space derivatives, and optional second-order diffusion terms. The use of the function to
solve systems which are not naturally in this form is discouraged, and users are advised to use one of the
central-difference schemes for such problems.

Users should be aware of the stability limitations for hyperbolic PDEs. For most problems with small
error tolerances the ODE integrator does not attempt unstable time steps, but in some cases a maximum
time step should be imposed using tsmax. It is worth experimenting with this parameter, particularly if the
integration appears to progress unrealistically fast (with large time steps). Setting the maximum time step
to the minimum mesh size is a safe measure, although in some cases this may be too restrictive.

Problems with source terms should be treated with caution, as it is known that for large source terms stable
and reasonable looking solutions can be obtained which are in fact incorrect, exhibiting non-physical
speeds of propagation of discontinuities (typically one spatial mesh point per time step). It is essential to
employ a very fine mesh for problems with source terms and discontinuities, and to check for non-physical
propagation speeds by comparing results for different mesh sizes. Further details and an example can be
found in Pennington and Berzins (1994).

The time taken depends on the complexity of the system and on the accuracy requested.

d03 – Partial Differential Equations d03pfc

[NP3645/7] d03pfc.11

9 Example

For this function two examples are presented, with a main program and two example problems given in the
functions ex1 and ex2.

Example 1 (ex1)

This example is a simple first-order system which illustrates the calculation of the numerical flux using
Roe’s approximate Riemann solver, and the specification of numerical boundary conditions using
extrapolated characteristic variables. The PDEs are

@U1

@t
þ @U1

@x
þ @U2

@x
¼ 0;

@U2

@t
þ 4

@U1

@x
þ @U2

@x
¼ 0;

for x 2 ½0; 1� and t � 0. The PDEs have an exact solution given by

U1ðx; tÞ ¼ 1
2
expðxþ tÞ þ expðx� 3tÞf g þ 1

4
sinð2�ðx� 3tÞ2Þ � sinð2�ðxþ tÞ2Þ

n o
þ 2t2 � 2xt;

U2ðx; tÞ ¼ expðx� 3tÞ � expðxþ tÞ þ 1
2

sinð2�ðx� 3tÞ2Þ þ sinð2�ðx� 3tÞ2Þ
n o

þ x2 þ 5t2 � 2xt:

The initial conditions are given by the exact solution. The characteristic variables are 2U1 þ U2 and
2U1 � U2 corresponding to the characteristics given by dx=dt ¼ 3 and dx=dt ¼ �1 respectively. Hence a
physical boundary condition is required for 2U1 þ U2 at the left-hand boundary, and for 2U1 � U2 at the
right-hand boundary (corresponding to the incoming characteristics); and a numerical boundary condition
is required for 2U1 � U2 at the left-hand boundary, and for 2U1 þ U2 at the right-hand boundary (outgoing
characteristics). The physical boundary conditions are obtained from the exact solution, and the numerical
boundary conditions are calculated by linear extrapolation of the appropriate characteristic variable. The
numerical flux is calculated using Roe’s approximate Riemann solver: Using the notation in Section 3, the
flux vector F and the Jacobian matrix A are

F ¼ U1 þ U2

4U1 þ U2

� �
and A ¼ 1 1

4 1

� �
;

and the eigenvalues of A are 3 and �1 with right eigenvectors ½1 2�T and ½�1 2�T respectively. Using
equation (4) the �k are given by

U1R � U1L

U2R � U2L

� �
¼ �1

1

2

� �
þ �2

�1

2

� �
;

that is

�1 ¼ 1
4
2U1R � 2U1L þ U2R � U2LÞð and �2 ¼ 1

4
�2U1R þ 2U1L þ U2R � U2LÞð :

FL is given by

FL ¼ U1L þ U2L 4U1L þ U2L½ �;
and similarly for FR. From equation (4), the numerical flux vector is

F̂F ¼ 1
2

U1L þ U2L þ U1R þ U2R

4U1L þ U2L þ 4U1R þ U2R

� �
� 1

2
�1j3j

1

2

� �
� 1

2
�2j�1j �1

2

� �
;

that is

F̂F ¼ 1
2

3U1L � U1R þ 3
2
U2L þ 1

2
U2R

6U1L þ 2U1R þ 3U2L � U2R

� �
:

d03pfc NAG C Library Manual

d03pfc.12 [NP3645/7]

Example 2 (ex2)

This example is an advection-diffusion equation in which the flux term depends explicitly on x:

@U

@t
þ x

@U

@x
¼ �

@2U

@x2
;

for x 2 ½�1; 1� and 0 � t � 10. The parameter � is taken to be 0:01. The two physical boundary
conditions are Uð�1; tÞ ¼ 3:0 and Uð1; tÞ ¼ 5:0 and the initial condition is Uðx; 0Þ ¼ xþ 4. The
integration is run to steady state at which the solution is known to be U ¼ 4 across the domain with a
narrow boundary layer at both boundaries. In order to write the PDE in conservative form, a source term
must be introduced, i.e.,

@U

@t
þ @ðxUÞ

@x
¼ �

@2U

@x2
þ U:

As in Example 1, the numerical flux is calculated using the Roe approximate Riemann solver. The
Riemann problem to solve locally is

@U

@t
þ @ðxUÞ

@x
¼ 0:

The x in the flux term is assumed to be constant at a local level, and so using the notation in Section 3,
F ¼ xU and A ¼ x. The eigenvalue is x and the eigenvector (a scalar in this case) is 1. The numerical
flux is therefore

F̂F ¼ xUL if x � 0;
xUR if x < 0:

�

9.1 Program Text

/* nag_pde_parab_1d_cd (d03pfc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>
#include <math.h>

int ex1(void);
int ex2(void);

static void pdedef(Integer, double, double, const double[],
const double[], double[], double[], double[],
double[], Integer *, Nag_Comm *);

static void bndary1(Integer, Integer, double, const double[],
const double[], Integer, double[], Integer *,
Nag_Comm *);

static void bndary2(Integer, Integer, double, const double[],
const double[], Integer, double[], Integer *,
Nag_Comm *);

static void numflx1(Integer, double, double, const double[],
const double[], double[], Integer *, Nag_Comm *,
Nag_D03_Save *);

static void numflx2(Integer, double, double, const double[],
const double[], double[], Integer *, Nag_Comm *,
Nag_D03_Save *);

static void exact(double, double *, Integer, const double *, Integer);

d03 – Partial Differential Equations d03pfc

[NP3645/7] d03pfc.13

int main(void)
{

Vprintf("d03pfc Example Program Results\n");
ex1();
ex2();
return 0;

}

#define U(I,J) u[npde*((J)-1)+(I)-1]
#define P(I,J) p[npde*((J)-1)+(I)-1]
#define UE(I,J) ue[npde*((J)-1)+(I)-1]

int ex1(void)
{

double tout, ts, tsmax;
const Integer npde=2, npts=101, outpts=7, inter=20, lisave=npde*npts+24,

lrsave=(11+9*npde)*npde*npts+(32+3*npde)*npde+7*npts+54;
Integer exit_status, i, ind, it, itask, itrace, j, nop;
double *acc=0, *rsave=0, *u=0, *ue=0, *x=0, *xout=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

/* Allocate memory */

if (!(acc = NAG_ALLOC(2, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(u = NAG_ALLOC(npde*npts, double)) ||
!(ue = NAG_ALLOC(npde*outpts, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xout = NAG_ALLOC(outpts, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

Vprintf("\n\nExample 1\n\n\n");
INIT_FAIL(fail);
exit_status = 0;

itrace = 0;
acc[0] = 1.0e-4;
acc[1] = 1.0e-5;
tsmax = 0.0;

Vprintf(" npts = %4ld acc[0] = %10.3e acc[1] = %10.3e\n\n",
npts, acc[0], acc[1]);

Vprintf(" x Approx u Exact u Approx v Exact v\n");

/* Initialise mesh */

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);

/* Set initial values */

ts = 0.0;
exact(ts, u, npde, x, npts);

ind = 0;
itask = 1;

for (it = 1; it <= 2; ++it)
{

tout = 0.1*it;

d03pfc(npde, &ts, tout, d03pfp, numflx1, bndary1, u, npts,
x, acc, tsmax, rsave, lrsave, isave, lisave, itask,

d03pfc NAG C Library Manual

d03pfc.14 [NP3645/7]

itrace, 0, &ind, &comm, &saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from d03pfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Set output points */

nop = 0;
for (i = 0; i < 101; i += inter)

{
++nop;
xout[nop - 1] = x[i];

}

Vprintf("\n t = %6.3f\n\n", ts);

/* Check against exact solution */

exact(tout, ue, npde, xout, nop);

for (i = 1; i <= nop; ++i)
{

j = (i-1)*inter+1;
Vprintf(" %9.4f %9.4f %9.4f %9.4f %9.4f\n",

xout[i-1], U(1,j), UE(1,i), U(2,j), UE(2,i));
}

}
Vprintf("\n");
Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations = %6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:

if (acc) NAG_FREE(acc);
if (rsave) NAG_FREE(rsave);
if (u) NAG_FREE(u);
if (ue) NAG_FREE(ue);
if (x) NAG_FREE(x);
if (xout) NAG_FREE(xout);
if (isave) NAG_FREE(isave);

return exit_status;
}

static void bndary1(Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ibnd, double g[], Integer *ires,
Nag_Comm *comm)

{
double c, exu1, exu2, pi;
double ue[2];

pi = nag_pi;

if (ibnd == 0)
{

exact(t, ue, npde, &x[0], 1);
c = (x[1] - x[0])/(x[2] - x[1]);
exu1 = (c + 1.0)*U(1, 2) - c*U(1, 3);
exu2 = (c + 1.0)*U(2, 2) - c*U(2, 3);
g[0] = 2.0*U(1, 1) + U(2, 1) - 2.0*UE(1, 1) - UE(2, 1);
g[1] = 2.0*U(1, 1) - U(2, 1) - 2.0*exu1 + exu2;

} else {
exact(t, ue, npde, &x[npts-1], 1);
c = (x[npts-1] - x[npts - 2])/(x[npts - 2] - x[npts - 3]);
exu1 = (c + 1.0)*U(1, 2) - c*U(1, 3);

d03 – Partial Differential Equations d03pfc

[NP3645/7] d03pfc.15

exu2 = (c + 1.0)*U(2, 2) - c*U(2, 3);
g[0] = 2.0*U(1, 1) - U(2, 1) - 2.0*UE(1, 1) + UE(2, 1);
g[1] = 2.0*U(1, 1) + U(2, 1) - 2.0*exu1 - exu2;

}

return;
}

static void numflx1(Integer npde, double t, double x, const double uleft[],
const double uright[], double flux[], Integer *ires,
Nag_Comm *comm, Nag_D03_Save *saved)

{
flux[0] = 0.5*(-uright[0] + 3.0*uleft[0] + 0.5*uright[1] + 1.5*uleft[1]);
flux[1] = 0.5*(2.0*uright[0] + 6.0*uleft[0] - uright[1] + uleft[1]*3.);

return;
}

static void exact(double t, double *u, Integer npde,
const double *x, Integer npts)

{
double x1, x2, pi;
Integer i;

pi = nag_pi;

/* Exact solution (for comparison and b.c. purposes) */

for (i = 1; i <= npts; ++i)
{

x1 = x[i-1] + t;
x2 = x[i-1] - 3.0*t;

U(1,i) = 0.5*(exp(x1) + exp(x2))
+ 0.25*(sin(2.0*pi*(x2*x2)) - sin(2.0*pi*(x1*x1)))
+ 2.0*t*t - 2.0*x[i-1]*t;

U(2,i) = exp(x2) - exp(x1) +
0.5*(sin(2.0*pi*(x2*x2)) + sin(2.0*pi*(x1*x1))) +
x[i-1]*x[i-1] + 5.0*t*t - 2.0*x[i-1]*t;

}
return;

}

int ex2(void)
{

double tout, ts, tsmax;
const Integer npde=1, npts=151, outpts=7, lisave=npde*npts+24,

lrsave=(11+9*npde)*npde*npts+(32+3*npde)*npde+7*npts+54;
Integer exit_status=0, i, ind, it, itask, itrace;
double *acc=0, *rsave=0, *u=0, *x=0, *xout=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

/* Allocate memory */

if (!(acc = NAG_ALLOC(2, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(u = NAG_ALLOC(npde*npts, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xout = NAG_ALLOC(outpts, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

Vprintf("\n\nExample 2\n\n\n");

d03pfc NAG C Library Manual

d03pfc.16 [NP3645/7]

INIT_FAIL(fail);

itrace = 0;
acc[0] = 1e-5;
acc[1] = 1e-5;

Vprintf(" npts = %4ld acc[0] = %10.3e acc[1] = %10.3e\n\n",
npts, acc[0], acc[1]);

/* Initialise mesh */

for (i = 0; i < npts; ++i) x[i] = -1.0 + 2.0*i/(npts-1.0);

/* Set initial values */

for (i = 1; i <= npts; ++i) U(1, i) = x[i-1] + 4.0;

ind = 0;
itask = 1;
tsmax = 0.02;

/* Set output points */

xout[0] = x[0];
xout[1] = x[3];
xout[2] = x[36];
xout[3] = x[75];
xout[4] = x[111];
xout[5] = x[147];
xout[6] = x[150];

Vprintf(" x ");

for (i = 0; i < 7; ++i)
{

Vprintf("%9.4f", xout[i]);
Vprintf((i+1)%7 == 0 || i == 6 ?"\n":"");

}
Vprintf("\n");

/* Loop over output value of t */

ts = 0.0;
tout = 1.0;
for (it = 0; it < 2; ++it)

{
if (it == 1) tout = 10.0;

d03pfc(npde, &ts, tout, pdedef, numflx2, bndary2, u, npts,
x, acc, tsmax, rsave, lrsave, isave, lisave, itask,
itrace, 0, &ind, &comm, &saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from d03pfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf(" t = %6.3f\n", ts);
Vprintf(" u %9.4f%9.4f%9.4f%9.4f%9.4f%9.4f%9.4f\n\n",

U(1,1), U(1,4), U(1,37), U(1,76),
U(1,112), U(1,148), U(1,151));

}

Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations = %6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:

d03 – Partial Differential Equations d03pfc

[NP3645/7] d03pfc.17

if (acc) NAG_FREE(acc);
if (rsave) NAG_FREE(rsave);
if (u) NAG_FREE(u);
if (x) NAG_FREE(x);
if (xout) NAG_FREE(xout);
if (isave) NAG_FREE(isave);

return exit_status;
}

static void pdedef(Integer npde, double t, double x, const double u[],
const double ux[], double p[], double c[], double d[],
double s[], Integer *ires, Nag_Comm *comm)

{
P(1, 1) = 1.0;
c[0] = 0.01;
d[0] = ux[0];
s[0] = u[0];

return;
}

static void bndary2(Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ibnd, double g[], Integer *ires,
Nag_Comm *comm)

{
if (ibnd == 0)

{
g[0] = U(1, 1) - 3.0;

} else {
g[0] = U(1, 1) - 5.0;

}
return;

}

static void numflx2(Integer npde, double t, double x, const double uleft[],
const double uright[], double flux[], Integer *ires,
Nag_Comm *comm, Nag_D03_Save *saved)

{
if (x >= 0.0)

{
flux[0] = x * uleft[0];

} else {
flux[0] = x * uright[0];

}
return;

}

9.2 Program Data

None.

9.3 Program Results

d03pfc Example Program Results

Example 1

npts = 101 acc[0] = 1.000e-04 acc[1] = 1.000e-05

x Approx u Exact u Approx v Exact v

t = 0.100

0.0000 1.0615 1.0613 -0.0155 -0.0150
0.2000 0.9892 0.9891 -0.0953 -0.0957
0.4000 1.0826 1.0826 0.1180 0.1178
0.6000 1.7001 1.7001 -0.0751 -0.0746
0.8000 2.3959 2.3966 -0.2453 -0.2458
1.0000 2.1029 2.1025 0.3760 0.3753

d03pfc NAG C Library Manual

d03pfc.18 [NP3645/7]

t = 0.200

0.0000 1.0957 1.0956 0.0368 0.0370
0.2000 1.0808 1.0811 0.1826 0.1828
0.4000 1.1102 1.1100 -0.2935 -0.2938
0.6000 1.6461 1.6454 -1.2921 -1.2908
0.8000 1.7913 1.7920 -0.8510 -0.8525
1.0000 2.2050 2.2050 -0.4222 -0.4221

Number of integration steps in time = 56
Number of function evaluations = 229
Number of Jacobian evaluations = 7
Number of iterations = 143

Example 2

npts = 151 acc[0] = 1.000e-05 acc[1] = 1.000e-05

x -1.0000 -0.9600 -0.5200 0.0000 0.4800 0.9600 1.0000

t = 1.000
u 3.0000 3.6221 3.8087 4.0000 4.1766 4.3779 5.0000

t = 10.000
u 3.0000 3.9592 4.0000 4.0000 4.0000 4.0408 5.0000

Number of integration steps in time = 503
Number of function evaluations = 1190
Number of Jacobian evaluations = 28
Number of iterations = 1035

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
- 1 . 5

- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

X

U 1

U 2

×××

×××

Figure 1
Solution to Example 1

d03 – Partial Differential Equations d03pfc

[NP3645/7] d03pfc.19

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

x

U

t=1.0

t=10.0

Figure 2
Solution to Example 2

d03pfc NAG C Library Manual

d03pfc.20 (last) [NP3645/7]

	d03pfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	npde
	ts
	tout
	pdedef
	npde
	t
	x
	u
	ux
	p
	c
	d
	s
	s
	ires
	comm

	numflx
	npde
	t
	x
	uleft
	uright
	flux
	ires
	comm
	saved

	bndary
	npde
	npts
	t
	x
	u
	ibnd
	g
	ires
	comm

	u
	npts
	x
	acc
	tsmax
	rsave
	lrsave
	isave
	lisave
	itask
	itrace
	outfile
	ind
	comm
	saved
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ACC_IN_DOUBT
	NE_FAILED_DERIV
	NE_FAILED_START
	NE_FAILED_STEP
	NE_INCOMPAT_PARAM
	NE_INTERNAL_ERROR
	NE_NOT_STRICTLY_INCREASING
	NE_REAL
	NE_REAL_2
	NE_SING_JAC
	NE_TIME_DERIV_DEP
	NE_USER_STOP
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_NOT_WRITE_FILE
	NE_NOT_CLOSE_FILE
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

